
Monera

Kingdom Bacteria & Viruses

Spectrum Materia Medica Volume 1

It is like that one bit of evidence.

It's there, it might be the key to the whole case.

You just have to think a little differently to find it.

Jeffery Deaver, The Vanished Man

Emryss Publishers

Dedication

This book is dedicated to
Julian Winston
in honour of his
research, and the work and joy
he has given to the homeopathic world.
Haarlem, 1st August 2005

All rights reserved. Apart from any fair dealing for the purpose of private study, research, criticism or review, as permitted under the Copyright, Designs and

Patents Act, 1988, no part of this book may be reproduced, stored or transmitted, in any form or by any means, without the prior written permission of the publishers. Enquiries should be addressed to:

Emryss by Publishers Duinoordstraat 78 2023 WE Haarlem The Netherlands

First edition August 2005

© 2005 Emryss by Publishers Haarlem, The Netherlands info@emrysspublishers.com

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Vermeulen, Frans

Monera, Spectrum of the Natural Kingdoms, Bacteria & Viruses

/ Frans Vermeulen.-Haarlem: Emryss bv

Cover: Jenni Tree/Olivier Bakker

Edited by:Jenni Tree

Layout:Jenni Tree Ary Bakker

ISBN 90-76189-15-3

NUR. 780

Access code: Homeopathy

Naming of Parts	XXX1
Orderly systems	xxxi
Classification in homeopathy	xxxii
The kingdoms	xxxii
The necessity of classification and categorisation	xxxiii
Homeopathic remedy abbreviations	xxxiii
Why more remedies?	xxxiv
Without going outside, you may know the whole world	xxxv
Bacterial benefits	xxxviii
Hubris versus humus	xxxvi
Nosodes and vaccines	xxxvii
The dose makes the poison	xxxviii
Many questions, different answers	xxxix
Building blocks	xxxix
Bacterial nomenclature	xl
Acknowledgements	xli
Classification kingdom Monera	xlii
Biology of Bacteria	1
PHYLUM PROTEOBACTERIA	6
Group Alpha Proteobacteria	8
I. Order Rhizobiales	9
IA. Family Brucellaceae	9
Brucella melitensis	9
Features	9
Brucellosis	10
Prevalence	10
Clinical manifestations	10
Key symptoms	12
Tuberculosis	13

Worldwide burden of brucellosis	14
Biological warfare	15
Neurobrucellosis	15
Materia Medica Brucella melitensis	16
Clinical characteristics	17
Symptoms	17
Cases	22
II. Order Rhodospirillales	25
IIA. Family Acetobacteriaceae	25
Acetobacter xylinus	25
Features	25
Kombucha	25
First encounter	26
Preservation	28
Benefits and risks	29
Comparison with Aceticum acidum	32
III. Order Rickettsiales	36
IIIA. Family Rickettsiaceae	36
Rickettsia	36
Rickettsiosis	36
Epidemic typhus	39
Symptoms of typhus fever	40
Materia Medica Typhus nosode	41
Sources	41
An emerging picture	41
Group Beta Proteobacteria	44
I. Order Burkholderiales	45
IA. Family Alcaligenaceae	45
Alcaligenes faecalis	45
Features	45
Materia Medica Faecalis	45
Bordetella pertussis	47
Features	47
Clinical features	47
Crowd versus individual	48

	Contents
Materia Medica Pertussis vaccine	51
Sources	51
Hypoglycaemia	52
Allergies	52
Materia Medica Pertussinum	55
Sources	55
Symptoms	55
Clinical pathogenesis	55
Cases	57
IB. Family Burkholderiaceae	60
Burkholderia mallei	60
Features	60
Clinical features	61
Materia Medica Hippozaeninum	62
Sources	62
Affinities	62
Melting away	62
Destruction	62
Nasal catarrh	62
Additional symptoms	63
Case	67
II. Order Neisseriales	68
IIA. Family Neisseriaceae	68
Genus Neisseria	68
Neisseria gonorrhoeae	69
Features	69
Disseminated gonococcal infection	69
Materia Medica Medorrhinum	70
Sources	70
Symptoms	71
Cases	75
Materia Medica Medorrhinum Americana	80
Sources	80
Symptoms	81
Neisseria meningitidis	86
Features	86
Meningitis	86

Materia Medica Meningococcinum	88
Indications	88
Neisseria subflava	89
Features	89
Clinical picture	89
Materia Medica Flavus	90
Sources	90
Symptoms	90
Neisseria catarrhalis / Neisseria mucosa	92
Sources	92
Materia Medica Sycotic Compound	94
Symptoms	94
Case	99
Group Gamma Proteobacteria	101
I. Order Enterobacteriales	102
IA. Family Enterobacteriaceae	102
Family features	102
Bowel nosodes	103
Bacillus No. 10 - Materia Medica	106
Sources	106
Symptoms	107
Bacillus No. 7	108
Origins and names	108
Citrobacter freundii	108
Enterobacter cloacae	109
Hafnia alvei	109
Materia Medica Bacillus No. 7	109
Sources	109
Symptoms	109
Escherichia coli	112
Features	112
Clinical features	113
Materia Medica Colibacillinum	117
Sources	117
Symptoms	117
Materia Medica Serum Anti-colibaccilum	122
Sources	122

	Contents
Symptoms	123
Escherichia coli mutabile	124
Mutations	124
Materia Medica Mutabile	125
Sources	125
Symptoms	125
Associated remedies	125
Cases	125
Klebsiella pneumoniae	128
Features	128
Friedländer	128
Materia Medica Mucotoxinum	129
Sources	129
Symptoms	129
Morganella morganii	130
Features	130
Fish poisoning	130
Materia Medica Morgan pure	131
Sources	131
Synopsis	132
Symptoms	134
Cases	138
Materia Medica Morgan gaertner	141
Sources	141
Symptoms	141
Proteus [vulgaris & mirabilis]	144
Features	144
Proteus - the shape-shifter	145
Materia Medica Proteus	148
Sources	148
Symptoms	148
Cases	158
More cases	162
Salmonella	169
Genus	169
Salmonella enteritidis	171
Features	171
Materia Medica Bacillus Gaertner	171

Sources

171

Symptoms	172
Čases	176
Salmonella paratyphi	184
Features	184
Materia Medica Paratyphoidinum B	184
Sources	184
Symptoms	184
Salmonella typhi	186
Features	186
Typhoid fever	186
Materia Medica Eberthinum	189
Sources	189
Symptoms	189
Čases	190
Shigella dysenteriae	192
Features	192
Shigellosis	192
Materia Medica Dysenteriae Co.	195
Sources	195
Symptoms	195
Cases	202
Yersinia	204
Genus	204
Yersiniosis	204
Yersinia enterocolitica	204
Yersinia pseudotuberculosis	206
Yersinia pestis	208
Features	208
Black Death	208
Clinical manifestations	208
The plague throughout history	209
Social breakdown	211
The whip of God	211
Absolution and abandonment	213
Dance of Death	214
Changing times	217
Materia Medica Pestinum	218
Sources	218
Symptoms	219

	Contents
Tuberculinic miasm	221
Materia Medica Serum Yersiniae	221
Sources	221
Indications	222
II. Order Pasteurellales	224
IIA. Family Pasteurellaceae	224
Haemophilus influenzae	224
Features	224
Hib vaccination	225
Materia Medica Haemophilus influenzae B vaccinus	226
Sources	226
Symptoms	226
III. Order Pseudomonadales	228
IIIA. Family Pseudomonadaceae	228
Pseudomonas aeruginosa	228
Features	228
Clinical features	229
IV. Order Vibrionales	231
IVA. Family Vibrionaceae	231
Vibrio cholerae	231
Features	231
Cholera	232
Patterns and carriers	234
Miasmatic theories	235
Koch's Postulates	236
Choleraic paranoia	237
Materia Medica Choleratoxin	238
Group Epsilon Proteobacteria	240
I.Order Campylobacterales	241
IA. Family Campylobacteraceae	241
Campylobacter jejuni	241
Features	241
Campylobacteriosis	242
Guillain-Barré syndrome	242

Homeopathy	243
IB. Family Helicobacteraceae	244
Helicobacter pylori	244
Features	244
Homeopathy	245
PHYLUM SPIROCHAETAE	247
I. Order Spirochaetales	248
IA. Family Leptospiraceae	248
Leptospira interrogans	248
Features	248
Leptospirosis	249
Clinical features	250
Materia Medica Leptospira	251
Sources	251
Symptoms	251
IB. Family Spirochataceae	252
Borrelia burgdorferi	252
Features	252
Lyme borreliosis	254
The imitator's new clothes	255
Tick-stricken	257
Syphilitic miasm	259
Materia Medica Borrelia	260
Sources	260
Symptoms	260
Treponema pallidum	274
Features	274
The good	275
and the bad	276
Psora or syphilis?	279
Tracing the syphilitic miasm	281
Locomotion	283
The fine line between survival and destruction	285
Stages of syphilis	287
General paresis	291

	Contents
Materia Medica Syphilinum	296
Sources	296
Symptoms	297
Cases	303
Treponema pertenue	311
Features	311
Yaws	311
Materia Medica Framboesinum	314
Sources	314
Differential diagnosis	314
PHYLUM CYANOBACTERIA	315
I. Order Chroococcales	317
IA. Family Chroococcaceae	317
Microcystis aeruginosa	317
Harmful algal blooms	317
Microcystin	318
Materia Medica Microcystis aeruginosa	319
Sources	319
Symptoms	319
II. Order Nostocales	322
IIA. Family Nostocaceae	322
Anabaena flos-aqua	322
Cyano-HABS	322
Saxitoxin and brevetoxin	323
Mussel poisoning	325
Alzheimer's disease and algal blooms	327
Materia Medica Saxitoxinum	329
Sources	329
Symptoms	329
III. Order Oscillatoriales	332
IIIA. Family Phormidaceae	332
IIIB. Family Pseudanabaenaceae	332
Spirulina	332
Microbial mats	332
Food supplement	333

DIVISION FIRMICUTES	336
[Gram-positive and protein-walled bacteria]	336
PHYLUM ENDOSPORA	336
CLASS Bacilli	338
I. Order Bacillales	338
IA. Family Bacillaceae	338
Bacillus anthracis	338
Genus Bacillus	338
Bacillus anthracis	340
Anthrax	341
The fifth and sixth plagues	342
Materia Medica Anthracinum	344
Sources	344
Symptoms	344
Cases	347
IB. Family Listeriaceae	349
Listeria monocytogenes	349
Features	349
Listeriosis	349
Materia Medica Listeriosis nosode	351
Sources	351
IC. Family Staphylococcaceae	352
Staphylococcus aureus	352
Features	352
Food poisoning	353
Clinical manifestations	355
Materia Medica Staphylococcinum	356
Sources	356
Symptoms	356
Coccal co.	359
Staphylotoxinum	359
II. Order Lactobacillales	360

	Contents
IIA. Family Enterococcaceae	361
Enterococcus faecalis	361
Features	361
Aetiological factors	362
Clinical features	362
Materia Medica	363
Materia Medica Enterococcinum	363
Sources	363
Symptoms	364
Materia Medica Strepto-enterococcinum	365
Sources	365
Symptoms	365
IIB. Family Lactobacillaceae	368
Lactobacillus acidophilus	368
Features genus Lactobacillus	368
Lactic acid	368
Benefits of lactobacilli	369
Homeopathy	370
Two sour lacs	370
Lactose and lactic acid	372
IIC. Family Streptococcaceae	374
Streptococcus pneumoniae	374
Features	374
Clinical manifestations	374
Meningitis	379
Pneumococcal vaccines	380
Materia Medica Pneumococcinum	381
Sources	381
Aetiological factors	381
Symptoms	382
Cases	384
Streptococcus pyogenes	387
Features	387
Clinical manifestations	388
Sequelae	389
Chorea	389

Epidemiology	391
Other streptococci	392
Group A	392
Group B	392
Group C - Viridans	392
Tumours and streptococci	394
Coley's toxins	394
Use and effects	395
Adverse effects	396
Current use	397
Immunotherapy	397
Tumour necrosis factor	397
Endotoxins and Serratia	399
Therapeutics	400
Streptokinase	400
Adverse reactions	401
Scarlet fever	402
Scarlatina	402
Scarlet fever, antibiotics, streptococcal resistance	and the enforcement
of health	402
Materia Medica Scarlatinum	403
Sources	403
Aetiological factors	403
Clinical pathogenesis	403
Sequelae of scarlet fever	404
Cases	404
Materia Medica Streptococcinum	409
Sources	409
Aetiological factors	409
Symptoms	410
Cases	413
CLASS Clostridia	417
I. Order Clostridiales	417
IA. Family Clostridiaceae	417
Clostridium	417
Features	417
Clostridium hotulinum	419

	Contents
Features	419
Categories of botulism	420
Food-borne botulism	422
From bioweapon to biodrug to cosmetic craze	425
Adverse effects	427
Materia Medica Botulinum	429
Sources	429
Indications	429
Individual symptoms	430
Proving Symptoms	432
Themes	432
Generals	435
Locals	437
Cases	439
Clostridium difficile	441
Features	441
Clinical manifestations	441
Clostridium perfringens	442
Features	442
Clinical manifestations	442
Clostridium tetani	444
Features	444
Tetanus	444
Clinical forms	444
Generalised tetanus	445
Wounds	447
Fluctuation	448
Biting	448
Loganiaceae	449
Materia Medica Tetanotoxinum	449
Sources	449
Symptoms	449
Materia Medica Tetanus vaccinus	450
Sources	450
Tetany	450
Immunisation	451
Adverse effects	452
PHYLUM PIRELLULAE	455

I. Order Chlamydiales	456
IA. Family Chlamydiaceae	456
Chlamydia trachomatis	456
Features	456
Subgroups	457
Chlamydia trachomatis infections	457
Trachoma	457
Non-gonococcal urethritis	458
Lymphogranuloma	459
Neonatal	459
Other chlamydias	460
Materia Medica Chlamydia trachomatis	461
Sources	461
Clinical experience	462
Symptoms	462
Case	466
PHYLUM ACTINOBACTERIA	469
I. Order Actinomycetales	471
IA. Family Actinomycetaceae	471
Actinomyces israelii	471
Features	471
Actinomycosis	472
IB. Family Corynebacteriaceae	474
Corynebacterium diphtheriae	474
Features	474
Clinical features	475
Immunisation	477
Materia Medica Diphtherinum	479
Sources	479
Applications	480
Symptoms	480
Cases	481
Materia Medica Diphtherotoxinum	486
Indications	486
Symptoms	487

	Contents
Diphtheria, Tetanus, Pertussis [DTP] vaccine	488
History	488
Post-vaccination syndromes	489
Materia Medica DTP vaccine	489
Sources	489
Symptoms	490
Behaviour and personality changes	495
Cases	496
IC. Family Micromonosporaceae	498
Micromonospora purpurea	498
Materia Medica Gentamicinum	498
The drug	498
Rare adverse effects	499
ID. Family Mycobacteriaceae	501
Mycobacterium avium	501
Features	501
Mycobacterium avium complex	502
Materia Medica Tuberculinum avis	503
Sources	503
Symptoms	503
Generals	505
Locals	505
Cases	505
Mycobacterium avium subsp. paratuberculosis	510
Features	510
Crohn's disease	511
Crohn's disease and intestinal tuberculosis	514
Cervical lymphadenitis followed by terminal ileitis	516
Johne's disease	518
Materia Medica Johneinum	519
Sources	519
Symptoms	519
Mycobacterium bovis	525
Features	525
Milk-borne transmission	525
Differentiating the Tuberculinums	526
Materia Medica Tuberculinum bovinum Kent	527

Sources	527
Tubercular meningitis	528
Sequelae	531
Cases	532
Bacillus Calmette-Guérin	535
History	535
BCG	535
BCG and pertussis	537
Cancer treatment	538
Puberty	539
Materia Medica Vaccin atténué bilié	540
Sources	540
Symptoms	540
Mycobacterium leprae	543
Features	543
Clinical manifestations	544
Leprosy and TB	546
Holy and sinful	547
The stigma of sin	549
Rejection from normality	551
Materia Medica Leprominium	554
Sources	554
Symptoms	555
Comparisons	560
Mycobacterium tuberculosis	562
Features	562
Taming the beasts	563
Clinical manifestations	565
Hope and optimism	566
Voyages for health	568
Seeking fortune	571
Unleashed yearnings	573
A perplexing plethora of preparations	575
Keynotes	578
Materia Medica Bacillinum	579
Sources	579
Purulence	579
Proving Clarke	581
Proving Boocock	581

	Contents
Proving Sankaran	582
Proving Swan	584
Symptoms	584
Čases	585
Materia Medica Tuberculinum Denys	589
Sources	589
Symptoms	589
Materia Medica Tuberculinum Koch	591
Sources	591
Koch's tuberculin	591
Effects of tuberculin injections	592
Symptoms	593
Difference with Bacillinum	595
Tuberculinum Marmorek	596
Sources	596
History	596
Туре	596
Symptoms	597
Tuberculinum residuum Koch	598
History	598
Sources	599
Symptoms	599
Tuberculinum Rosenbach	601
Sources	601
Tuberculinum Spengler	601
History	601
Sources	601
Indications	602
IE. Family Nocardiaceae	603
Nocardia asteroides	603
Features	603
Nocardiosis	604
IF. Family Streptomycetaceae	606
Genus Streptomyces	606
Antibiotics	606
Streptomyces albus	607
Drug: Salinomycin	607

Uses	607
Adverse effects	608
Streptomyces ambofaciens	608
Drug: Spiramycin [Rovamycine]	608
Uses	608
Adverse effects	609
Streptomyces aureofaciens	609
Drug: Chlortetracycline [Aureomycin]	609
History	609
Uses	609
Adverse effects	609
Streptomyces caespitosus	610
Drug: Mitomycin	610
Uses	610
Adverse effects	610
Streptomyces erythreus	611
Drug: Erythromycin	611
Uses	611
Adverse effects	611
Streptomyces fradiae	611
Drug: Neomycin	611
History	611
Uses	611
Adverse effects	611
Streptomyces garyphalus	612
Drug: Cycloserine	612
History	612
Uses	612
Adverse effects	612
Streptomyces griseus	612
Drug: Streptomycin	612
History	612
Uses	612
Adverse effects	613
Materia Medica Streptomycinum sulphatum	615
Sources	615
Symptoms	615
Streptomyces nodosus	616
Drug: Amphotericin B.	616

	Contents
History	617
Uses	617
Adverse effects	617
Streptomyces noursei	617
Drug: Nystatin	617
Uses	617
Adverse reactions	617
Streptomyces peucetius var. caesius	618
Drug: Doxorubicin	618
Uses	618
Adverse effects	618
Streptomyces venezuelae	618
Drug: Chloramphenicol [Chloromycetin]	618
History	618
Uses	618
Adverse effects	619
Materia Medica Chloramphenicolum	619
Sources	619
Symptoms	619
PART 2: VIRUSES	
Kingdom' Viruses	626
Classification and taxonomy viruses	628
DNA VIRUSES	633
CLASS I - DOUBLE STRANDED DNA	633
a. double stranded DNA; naked; polyhedral capsid	633
Adenoviridae	633
General	633
Homeopathy	634
Papillomaviridae	634
General	634
Homeopathy	634

b. double stranded; circular DNA; enveloped; complex	635
Poxviridae	635
Plenty of pox	635
Inoculation, scarification, variolation	636
Vaccination or equination?	637
Horse-grease	638
Malandrinum	640
Materia Medica Malandrinum	641
Sources	641
Clinical manifestations of horse-grease infection	641
Symptoms	642
Case	646
Materia Medica Vaccininum	647
Cowpox	647
Sources	647
Symptoms	648
Variola - Smallpox	650
Clinical manifestations of smallpox	650
Adverse effects of smallpox vaccination	652
Materia Medica Variolinum	654
Sources	654
Symptoms	657
Common symptoms of Variolinum, Vaccininum and	
Malandrinum	661
Cases	662
c. double stranded DNA; enveloped; polyhedral capsid	664
Herpesviridae	664
General	664
Alphaherpesvirinae	665
HHV 1 & 2 - Herpes simplex	665
Herpes simplex nosode	665
HHV-3 - Varicella-zoster virus	665
Varicella nosode	666
Herpes zoster	666
Herpes zoster nosode	667

(^	nte	ntc
\sim	1116	111.00

Betaherpesvirinae	667
HHV-5 - Cytomegalovirus	667
Cytomegalie nosode	668
HHV-6 - Roseolovirus	668
Herpes virus type 6 nosode	669
Gammaherpesvirinae	669
HHV-4 - Epstein-Barr virus - Infectious mononucleosis	669
Homeopathy	670
d. double stranded DNA; with a RNA intermediatein replication	671
Hepadnaviridae	671
Hepatitis B	671
Hepatitis B vaccine	672
Homeopathy	672
RNA VIRUSES	
CLASS IV - POSITIVE SINGLE STRANDED RNA	674
a. positive single stranded RNA; naked; polyhedral capsid	674
Picornaviridae	674
General	674
Genus Enterovirus	675
Enteroviruses - general	675
Coxsackieviruses	675
Homeopathy	675
Poliovirus	675
Polio and carbohydrates	678
Susceptibility to polio	679
Homeopathy and post-polio syndrome	680
Key symptoms	684
Proving polio nosode	684
Sources	684
Symptoms	685
Genus Hepatovirus	686
Hepatitis A	686
Homeopathy	686
Genus Rhinovirus	686

Common colds	686
b. positive single stranded RNA; enveloped; polyhedral capsid	687
Coronaviridae	687
General	687
Homeopathy	687
Flaviviridae	688
General	688
Dengue fever	688
Yellow fever	688
Hepatitis C	689
Homeopathy	689
Togaviridae	690
Rubella	690
Complications	690
Congenital rubella syndrome	691
Homeopathy	691
with a DNA intermediate in replication; enveloped; bullet-shape or polyhedral capsid	693
Retroviridae	693
HIV and retroviruses	693
Conservative views and conspiracy theories	694
Misconceptions	697
Clinical manifestations	698
Neurologic	699
Wasting	701
Dermatologic	701
Endocrine	701
Gastrointestinal	702
Head and neck	702
AIDS-defining diseases	702
Materia Medica AIDS nosode	703
Sources	703
Major themes	704
Issues	706

	Contents
Repertory rubrics	708
Materia Medica Virionum	710
Sources	710
Symptoms	711
CLASS VI - NEGATIVE SINGLE STRANDED RNA	713
a. negative single stranded RNA; enveloped; pleomorphic	713
Bornaviridae	713
General	713
Neuropsychiatric disorders	714
Homeopathy	716
Filoviridae	717
General	717
Homeopathy	717
Paramyxoviridae	718
General	718
Canine Distemper Virus	718
Features	718
Homeopathy	721
Measles	721
Features	721
Clinical manifestations	722
Sequelae of measles	723
Measles vaccine and adverse reactions	724
Materia Medica Morbillinum	725
Sources	725
Indications	725
Symptoms	727
Cases	727
MMR	730
Adverse effects of MMR	730

MMR and autism

Clinical manifestations

Complications of mumps Materia Medica Parotidinum [Ourlianum]

MMR cases

Mumps Features 730

733 735

735

735

736 736

Sources	736
Indications	736
Symptoms proving	737
Suggested repertory rubrics	737
Hypothetical drug picture of Parotidinum [Ourlianum]	737
Rhabdoviridae	739
Features	739
Clinical manifestations of rabies	739
Materia Medica Lyssinum	741
Sources	741
Symptoms	741
Repertory additions	747
b. segmented negative stranded RNA; enveloped	748
Orthomyxoviridae	748
Influenza	748
Materia Medica Influenzinum	750
Sources	750
Prophylaxis	750
Post-influenzal sequelae	750
Flu shots	753
Cases	754
Materia Medica Influenza vaccine 97/98	758
Unclear remedy picture	758
Cases	759
Materia Medica Oscillococcinum	763
The microbe	763
Cancer treatment	763
The duck	764
Symptoms	766
Bibliography	768
Glossary	777
Index	784
Bits and Pieces	798

NAMING OF PARTS

Orderly systems

Aristotle made in the 4th century BC one of the first attempts to classify living things according to a scientific and orderly system. He made a division into two groups: plants and animals. Depending on their way of locomotion, the animals were placed in three subgroups: flyers, swimmers, and walkers. Fish, sea snake and dolphin consequently fell in the category of swimmers, whilst butterfly, bee, bat and bird were included in the group that flew.

For almost 2000 years Aristotle's division satisfied biologists, until by the 17th century systems were introduced that classified living organisms according to similarities in form and structure, including internal anatomy and external appearance.

Although organisms were now placed in more meaningful groups, the division as either plants or animals was maintained. The 18th-century Swedish scientist Carl von Linné devoted his life to improving the two-tier system taxonomically. He introduced the binominal or Linnaean nomenclature, in which all known living organisms are given a formal scientific *double* name in Latin. First comes the generic and then the specific name.

Flowering plant families vary widely in their contents, as do fungal and other families. Some contain only a single genus and species [monotypic], whereas others contain hundreds of genera and thousands of species [polytypic]. Only recently, around the middle of the $20^{\rm th}$ century, more consequent divisions of living organisms were proposed and accepted, so that now five kingdoms exist, although some taxonomists have come up with no less than 22 kingdoms.

Homeopathy appears to carry on in the Aristotelean tradition. By and large two groups of living organisms are recognized - plants and animals. Fungi are looked upon as plants without chlorophyl while the Monera kingdom is placed somewhere on the sideline; a few are semi-synthetic antibiotic drugs, the others are disease products called 'nosodes'.

Also regarding drug names and abbreviations homeopathy lives in pre-Linnaean times. It may be argued that homeopathy has its own systematics, namely a classification according to similarities between drug pictures. True, but for this to work, drug pictures must be absolutely reliable and more or less complete. Such an argument moreover tends to ignore or trivialize the connection between the nature [disposition] of [living] organisms and the signs and symptoms associated with them.

Cross-connections between drugs of different origins, eg a plant and an ani-

Foreword

mal, are a good thing, yet become even better when they are supported by more than symptoms only. Substances, animate or inanimate, are the alpha and omega of the homeopathic materia medica and their interconnections therefore define the relationships between symptom pictures. In my opinion, there is no better way to arrange the materia medica than including the nature of the substances/organisms that serve as its sources.

Classification in homeopathy

Homeopathy has adopted some sort of classification system in order to recognize the similarities between the different remedies and to categorize their common characteristics into larger units. With his *Clinical Materia Medica*, Ernest A. Farrington [1847-1885] was the first to arrange drug pictures according to taxonomic groups. Farrington's basic units are what he calls "orders," which actually are families. Currently many homeopaths favour the use of groupings on the level of so-called *families*. Classifications such as "snake family", "spider family", "crustaceans family", etc., are formally inaccurate since these groupings concern a suborder [snakes], an order [spiders] and a class [crustaceans], respectively.

We have to deal with considerable problems, not in the last place because we rely on a materia medica, parts of which are clearly past their expiry dates. Another problem is the frequently obsolete nomenclature and taxonomy. How can we connect with other fields of science when we don't even speak the same language? And what if we want to extend our search for information and use an invalid name?

The kingdoms

Attempts have been made in homeopathy to simplify matters by using three kingdoms: animals, plants, minerals. This system needs revision for the simple reason that today the generally accepted classification system comprises five kingdoms, or six if we regard minerals as living organisms: Monera, Protista, Fungi, Plantae, Animalia, and Mineralia.

Bacteria are placed in the Monera kingdom: unicellular organisms whose hereditary material is not enclosed in a nucleus. The kingdom Protista contains a large group of unicellular nucleated organisms. These organisms are on the borderline between plants and animals, and include unicellular algae, downy moulds, dinoflagellates, amoebae, trichomonads and sporozoans [eg, Plasmodium, which causes malaria]. While some are capable of animal-like movement [protozoans], others have distinctly plant-like characteristics [protophyta or chromista].

Fungi in homeopathy are placed in the kingdom Plantae, a division that not only is outdated but also prevents our perceiving them in their own right, with their specific characteristics, which are fundamentally different from those of other kingdoms.

Systems are artificial and for none of the kingdoms a consistent system of classification exists. Although currently the five kingdom classification stands, revisions are underway to better reflect diversity and evolutionary relationships. The proposed revisions split the Monera into two kingdoms [Archaebacteria and Eubacteria] and the Protista into three distinct kingdoms.

The necessity of classification and categorisation

Species can be defined as a group of individuals having common characteristics, while a genus consists of a collection of similar and/or closely related species. The basic units of classification, the species, are grouped into higher or more-inclusive units: above the genus comes the family, then the order, then the class and finally the phylum [also called division].

There are many subdivisions: species are subdivided in subspecies or varieties; families in subfamilies, subfamilies in tribes, tribes in subtribes; classes in subclasses; and phylla in subphylla [or subdivisions]. Cultivated [plant] varieties are known as cultivars. The category "superorder" is placed between the taxonomic categories order and subclass or class.

The higher the rank, the larger the number of species contained and consequently the more general and less specific the distinctive features. This can be employed in a similar fashion in case analysis. Starting at the top we first try to decide for the larger unit - snake, spider, fungus, mineral, metal, etc. - and then work our way downward, fine-tuning our choice. Or we begin at the level of the species - a certain remedy - and refine our selection by differentiating *within* the larger unit of which the species is part.

Homeopathic remedy abbreviations

The current abbreviation system in homeopathy doesn't follow clear rules. Its ambiguity lies in the fact that remedy names, and thus their abbreviations, sometimes refer to a genus, eg Hyoscyamus or Conium, and at other times to a species, eg Dulcamara or Abrotanum. A more consistent approach would be to use the Latin binominals of *organisms* instead of drug names. This always gives first the generic and then the specific name, thereby revealing relationships between remedies on the generic level. If the abbreviation for, say, Stramonium would be in line with the binominal system, it would show right away its alliance with other Datura species. It would be good

Foreword

practice to extend abbreviations now solely indicating the genus, eg Lycopodium or Arnica, with the specific name, thus: Lyc-c. [Lycopodium clavatum] and Arn-m. [Arnica montana], in order to allow future inclusion of other members of such genera. Single names referring to a species, such as Absin. or Bell., can be placed as an extension behind the generic name, preserving the traditional abbreviation: Art-absin.[Artemisia absinthium] and Atro-bell. [Atropa belladonna]. In certain instances the link between a plant and its main alkaloid can then be observed as well: Atropa belladonna and Atropinum. The additional plus-point of such a system, namely the possibilty of recognizing themes and patterns of naturally related remedies within repertory rubrics, may serve as a compensation for the trouble of getting accustomed to new names and abbreviations.

Why more remedies?

According to some there is no need for more homeopathic remedies. The polychrests are supposedly good for a 70-80 percentage of cured cases, with a handful of small remedies to fill the gaps. As much self-confirming as self-assuring, this philosophy is in contradiction with the major asset of homeopathy: individualisation. Individualisation works both ways: it is required in each case and it is the cornerstone for self-development of the homeopath. To keep on enlarging established drug pictures works as a self-fulfilling prophesy: the more symptoms are added to a remedy the more often it will be encountered in the repertories, resulting in its being prescribed more frequently, leading to more repertory additions, and so on.

Aside from the concept of polychrests as conflicting with the essence of homeopathy, polychrests derive much of their apparent identity from containing symptoms and indications common to the *larger unit* of which they are a member. For example, a large portion of the Lachesis symptoms are *snake symptoms* rather than individual symptoms typical for the particular species Lachesis muta. The species with the longest use as a homeopathic remedy, or when it is the sole representative of a group, therefore automatically will have most symptoms, due to additions from clinical cases, resulting in its being elevated to polychrest status. Only a proportionally small part of a given number of symptoms will be, by definition, species-related, while the rest is common to the genus, family or an even larger unit.

More remedies, provided their introduction follows some logic, will allow homeopathy to further develop its main contribution to health care: treatment of individuals.

Without going outside, you may know the whole world...

Bacterial benefits

Monera are bacteria. They play a minor role in homeopathy. They have no place as a group and their symptom pictures are often obscure. The current trend of facilitating the selection of remedies on the basis of their place in the natural kingdoms, not only ignores the fungi as a distinct unit, but also the micro-organisms. There are some 80 bacteria listed in the remedy abbreviation list. Some of them are symptomless, whereas a few others have thousands of symptoms.

Bacterial remedies fall into three categories:

allopathic drugs synthesized from bacterial metabolites;

normal commensals of the microbial flora;

species associated with bacterial diseases.

The latter category contains the major nosodes: Medorrhinum, Syphilinum, and Tuberculinum. Psorinum can be included or excluded, depending on one's view. [See Penicillium, Spectrum Vol. 2].

A step forward in realising the importance of micro-organisms might be the recent introduction of new "miasms" in addition to the traditional quartet. However, these new miasms mainly serve as categorisation models and hardly pay attention to the micro-organisms associated with them.

The better we learn to know a person, the better we understand him or her. So it is with any other living organism. Learning to know a bacterium, or a virus for that matter, seems less appealing than getting acquainted with animals, plants, or stones. We may feel attracted to flowers, trees, animals, gemstones, metals, but we quickly develop a disliking, or even fear or repulsion for micro-organisms. Bugs bug us; we have bad names for them: germs, creeps, parasites, pathogens, in short: disposable creatures. Flowers have powers, animals have spirits, stones are healers, but bacteria and viruses are "killers." Animals we domesticate, plants we cultivate, bacteria we exterminate. What we cannot see with the naked eye, we tend to discount. With a generous dash of humour, Robert Buckman, a Canadian professor of medicine, succeeds in putting words to what there is to see:

"If the numbers of species on Planet Earth are staggering, the numbers on or in Planet Human are hardly less so. For example, the body space of an average adult human being comprises approximately 100 trillion cells - that is one hundred million separate units of living matter. This is a fairly impressive number. Even more impressive, however, is the fact that of those 100 trillion cells inside the average human frame, only 10 trillion are human

Introduction

cells. The other 90 trillion cells are bacteria [with a few other parasites, fungi, and miscellaneous riff-raff thrown in for good measure]. Inside our own bodies we are outnumbered by other species nine to one. Fortunately, the human body is not a democracy, so even though our bodily bacteria do influence our workings in many ways, they don't have a vote. They therefore cannot decide - on their own - to throw us out entirely [although on occasions they can cause a variety of expulsions and upsets and ultimately, if one cares to think of it that way, they can cause revolution, dissolution, and redistribution]. Yet, even accepting that some species have the potential for doing us considerable harm, we can perhaps afford to be a little fairer to many of the other less threatening species with whom we share our body [and, in some cases, our planet].

Not everything that is non-human is necessarily bad for us. The mood of recent times has been to regard every non-human species in or on our bodies as untrustworthy and threatening. This is undoubtedly true of some species: there is no such thing as a friendly smallpox virus, and you cannot domesticate a malarial parasite and have it come when you call it."

Hubris versus humus

Bacteria are of major importance to Mother Earth. "An uncharted world of bacteria and other micro-organisms exists in and on the bodies of larger organisms," Edward Wilson has written. Some of the species are neutral guests, neither harming nor helping their hosts; others assist their hosts in digestion, excretion, and even the production of light. Although the vast majority of bacterial types remain unknown, bacteria are perceived as relatively well known because they are so important in medicine and ecology. When in the 1920s the idea was proposed that cell components, eg, mitochondria, originated as symbiotic bacteria, it was roundly rejected and ridiculed. Bacteria were agents of disease, dangerous pests, troublemakers, lying in wait to inflict harm on us. Spirochetes were transmitters of venereal disease, not the originators of motility and as such of the sperm tails of men. Bacteria had no place in the context of life's evolution.

In his Foreword to *Microcosmos*, an intriguing tale of microbial evolution by Lynn Margulis and Dorion Sagan, Lewis Thomas brings the entire affair into the open. He writes: "The biosphere is all of a piece, an immense, integrated living system, an organism. ... We used to believe that we arrived *de novo*, set in place by the Management, maybe not yet dressed but ready anyway to name all the animals. ... Most of us would prefer, given the choice, to track our species back to pure lines of kings and queens, stopping there and look-

ing no further. But now look at our dilemma. The first of us, the very first of our line, appeared sometime around 3.5 billion years ago, a single bacterial cell, the Ur-ancestor of all the life to come. We go back to it, of all things. Moreover, for all our elegance and eloquence as a species, for all our massive frontal lobes, for all our music, we have not progressed all that far from our microbial forebears. They are still with us, part of us. Or, put it another way, we are part of them. ... [Over a] 2.5 billion year stretch of time... our microbial ancestors, all by themselves, laid out most of the rules and regulations for interliving, habits we humans should be studying now for clues to our own survival. ... Perhaps we have had a shared hunch about our real origin longer than we think. It is there like a linguistic fossil, buried in the ancient root from which we take our species' name. The word for earth, at the beginning of the Indoeuropean language thousands of years ago was dhghem. From this word, meaning simply *earth* came our word *humus*, the handiwork of soil bacteria. Also, to teach us the lesson, humble, human, and humane. There is the outline of a philological parable here. ..."

Nosodes and vaccines

Regarding nosodes and vaccines, invaluable work was done by the late French homeopathic physician O.A. Julian. Why French homeopathy in general appears to be favourably disposed towards the use of nosodes is an interesting question. To a lesser extent the same holds true for German homeopathy. Here is a little history.

The French, with Louis Pasteur as their champion, have done much to promote the germ theory of disease. [A role played in Germany by Koch, amongst others.] Convinced that micro-organisms are responsible for disease, Pasteur succeeded in persuading the medical community that only particular organisms can produce specific conditions and that once those organisms were known, prevention would be possible by developing vaccines. To understand how influential the French have been, we only have to look at the number of micro-organisms or vaccines named after French researchers working at one time at the Pasteur Institute in Paris, eg, Bordet, Yersin, Calmette, Borrel, and Pasteur himself. It should therefore not come as a surprise that French homeopaths, eg, Cartier, Vannier, Fortier-Bernoville, Sevaux, and particularly Julian, have introduced into homeopathy a fair amount of remedies derived from either micro-organisms or vaccines. Contrary to Pasteur's coming through in scientific circles with flying colours, the homeopathic community has barely taken notice of the French contributions.

Introduction

Germs as the cause of trouble might not agree with Hahnemann's concept of an invisible spiritual [dynamic] force capable of affecting and being affected by similar forces, making microbes the result instead of the cause. It nevertheless doesn't take away practical considerations as to the employment of such remedies. Disregarding such established ones as Psorinum, Medorrhinum and Syphilinum, the use of any other nosode in homeopathy is more or less tantamount to being a last resort. If used at all, their use seems to be confined to desperate cases, blocked cases, relapsing cases; no or insufficient activity of apparently well-selected remedies, or malignancies. Might this not just be a reflection of the difficulties in giving "microbial" remedies a place? Accepting remedies from the microbial kingdom would seem to amount to accepting the germ theory as the cause of disease. Yet, irrespective of whether we believe microbes to be cause or result, homeopathy is based on similarity of phenomena.

Over time the established nosodes have grown into recognisable drug pictures for the simple reason that they have been used. Successful cases have been passed on and have helped to flesh out a better picture. Creativity and courage constitute homeopathy's essential requisites. To be able to prescribe we need something on which to base the prescription. Some of the presented microbial remedies are, admittedly, still in their infancy, perhaps never to mature, whilst others have enough individual elements to enable recognition, provided we study them closely. As with photographs, drug pictures also may be enlarged and refined. The sharpness or completeness of a picture depends as much on our focus as on the object.

The dose makes the poison

Paracelsus argued that the right dose differentiates a poison and a remedy, which is now known as the dose-response relationship, the Arndt-Schulz Law, a major concept of toxicology. To this Paracelsian axiom homeopathy has added its two main concepts: susceptibility and analogy. Assuming that the difference between a virulent poison and a great remedy also lies in the combination of dose, susceptibility and similarity, it would seem unfortunate that certain biological agents have such a minor place in homeopathy. For example, the deep impact of the Black Death, with Yersinia pestis as its biological agent, has "thrust this dread disease into the collective memory of western civilisation," as one author aptly put it. Terror-stricken societies sought to diffuse the threat by either trying to appease the God who perceivedly had brought the plague upon them or by attempting to create a common bond of union among human beings. It would be a mistake to dis-

regard plague because it occurred in medieval times and evoked what we now would consider superstitious reactions, if not mass hysteria. On the basis of analogy, plague represents as much as it causes. Being derived from 'plaga', Latin for 'strike' or 'blow,' plague stands for being stricken, terrorstricken, panic-stricken, stricken by a wrathful God, by war, by famine, by terrorists. It has played a role in many military campaigns: it befell armies of antiquity [Frederick the Great's as well as Napoleon's troops] and military traffic through Asia brought plague in its trail. The possible use of biological agents as vehicles for terrorism has recently induced considerable fear and alertness in western societies. Amongst such agents are plague, anthrax, brucellosis, smallpox and botulism. Aside from bringing up traumatic memories, and while not suggesting that terror is unique to plague, plague lives in the human collective subconsciousness as a miasmatic stain, which in remedy form, it might help to allay.

Many questions, different answers

Harry van der Zee wrote in the Editorial to Homoeopathic Links 4/01: "Let us suppose that our appreciation of what we and our patients experience in life is indeed, most of the time, determined by a limited perception. Suppose that all those influences that we label as bad are indeed part of a perfect harmony. What then should our attitude be towards them? In general as a method of healing, homeopathy already provides an answer to this question. We are not out there killing the microbes, but rather helping our patients to live in better harmony, both with themselves and also with their surroundings, including the world of micro-organisms. ...

In daily homeopathic practice, there are nevertheless still a lot of issues concerning infectious disease that deserve thought, experiment and discussion. ... How to deal with vaccinations, and with their effects? Do we have an alternative to them? What is the role of nosodes in homeopathic practice? What is there to know about lesser-known nosodes? Is there room for isopathy in classical homeopathy? How to understand and deal with the miasms? ... Considering the rich diversity of our profession I'm sure many have come to different answers. Let's share them, put them together, and see whether there is music in the totality of all these individual notes."

Building blocks

Will there ever come a time that we speak of a Staphylococcus-type, a Pestinum-personality, Salmonella-cravings, or Dysentery-characteristics? Realising our attitude towards micro-organisms helps us to understand our

Introduction

vision of them as potential remedies.

By a great deal of collecting, some connecting and a little bit of correcting I have attempted to bring together building blocks in order to start constructing a materia medica worthwhile focussing upon. I have followed H.C. Allen's advice that "to a proving of Anthracinum must be added all the symptoms of uncomplicated splenic fever; to those of Hydrophobinum [Lyssinum], the symptoms of every case of pure hydrophobia [rabies]; to those of Syphilinum all those of pure syphilis, etc., etc."

If, as Hering says, "the symptoms of the snake-bite and from the bee-sting have been proved to be useful in numerous cases," why not also the symptoms induced by Streptococcus, Clostridium, Brucella, Leptospira, etc.?

And if, as Wills has it, "cholera [is] an involuntary experiment on a very large scale," would then the numerous other "involuntary experiments" not at least furnish outlines of symptom pictures, in a similar fashion, albeit more crude, as provings do?

The first to manufacture and prove Medorrhinum and Syphilinum, Swan was of the same opinion as Wills: "Morbillinum, Scarlatinum, Variolinum" [and the rest] "are the fullest proved poisons in existence; they have been proven for hundreds of years by tens of thousands of persons, old and young, male and female. Here we have the provings ready made by nature for us on healthy persons. Collate the symptoms ... and you have the pathogenetic effect of that poison, and when you have such in the sick, administer the potentized and you will cure the effects of that poison."

In the Preface to his book *Rats, Lice and History*, Zinsser makes the striking observation that, "In following infectious diseases about the world, one ends by regarding them as biological individuals which have lived through centuries, … having existences which, in their developments and wanderings, can be treated biographically."

Humans have their personal histories, so have biological individuals. Hopefully both educative and entertaining, the following is an attempt to unravel parts of such biographies.

Bacterial nomenclature

The naming of bacteria is controlled by the International Code of Nomenclature of Bacteria. Since 1 January 1980, priority of bacterial names is based upon the *Approved Lists of Bacterial Names* [Skerman et al., 1980]. The names of the bacteria in Spectrum are in accordance with the Approved List, with the exception of the species without author citations. The latter names, often old synonyms, are without valid publications and therefore have no official standing in bacterial nomenclature.

Acknowledgements

I have included clinical cases, old and new, from homeopathic literature, for which Reference Works and Encyclopaedia Homeopathica have been indispensable and for which I am indebted to colleagues granting me permission to use their cases.

The reasons for including cases are manifold: they are illustrative, show vaious approaches in case analysis and remedy selection, demonstrate the value of locals and disease history, reveal that everyone struggles, prove that dedication and determination go a long way, clarify that polychrests are no panaceas, and above all, highlight the wonders of homeopathy.

Many thanks to everyone for helping collecting data, for proof-reading, correcting and translating, for being patient, for making difficult subjects lighter to digest and easy ones more complicated, for offering opinions, for explaining national or local customs, for reading the introduction, to Maud and Claire for being Maud and Claire.

Many special thanks to Jenni Tree, editor of the book, for her comments and additions. She has given Spectrum form and colour.

The following colleagues I'd like to thank for their help, directly or indirectly, and inspiration.

Peter Alex; Mirza Anwer Baig; Jeff Baker; Ary Bakker, Olivier Bakker, Grant Bentley; Robert Bianchini; Anthony Bickley; Richard Bocock; Mario Boiadjiev; Mirjam Böhle; Bert Breuker; Robert Bridge; George Christinson; Madeline Evans; Peter Fraser; Kris Gaublomme; Jutta Gnaiger-Rathmanner; Didier Grandgeorge; Melanie Grimes; Christina Head; Chris Jörgenfeldt; Lynda Kenyon; Stephen King; Louis Klein; Klaus Löbisch; Massimo Mangialavori; Lisa Mansell; Len Marlow; John Morgan; Karl-Josef Müller; Robert Müntz; Michael Neagu; Misha Norland; David Riley; Phillip Robbins; Rajan Sankaran; Anne Schadde; Erika Scheiwiller-Muralt; Debbie Schofield; Frederik Schroyens; Jeremy Sherr; Chetna N. Shukla; Steve Smith; Tinus Smits; Phou Souk-Aloun; Alize Timmerman; Francis Treuherz; David Warkentin; Roger van Zandvoort; Harry van der Zee; Hans Zwemke

Frans Vermeulen, Molkom, Sweden, 24 April, 2005.

CLASSIFICATION KINGDOM: MONERA [BACTERIA]

SUBKINGDOM EUBACTERIA

DIVISION GRACILICUTES

[Gram-negative bacteria]

PHYLUM PROTEOBACTERIA

Group Alpha Proteobacteria

ORDER Rhizobiales
FAMILY Brucellaceae
GENUS Brucella
SPECIES: B. melitensis

ORDER Rhodospirillales
FAMILY Acetobacteriaceae
GENUS Acetobacter
SPECIES: A. xylinus [Kombucha]

ORDER Rickettsiales
FAMILY Rickettsiaceae
GENUS *Rickettsia*SPECIES: *R. prowazekii* [Typhus nosode]

Group Beta Proteobacteria

ORDER Burkholderiales
FAMILY Alcaligenaceae
GENUS *Alcaligenes*SPECIES: *A. faecalis* [bowel nosode Faecalis]

GENUS Bordetella SPECIES: B. pertussis [Pertussinum]

FAMILY Burkholderiaceae

GENUS Burkholderia

SPECIES: B. mallei [Hippozaeninum]

ORDER Neisseriales

FAMILY Neisseriaceae

GENUS Neisseria

SPECIES: N. gonorrhoeae [Medorrhinum]

N. meningitidis [Meningococcinum]

N. subflava [Flavus]

N. mucosa [bowel nosode Sycotic Co.]

Group Gamma Proteobacteria

ORDER Enterobacteriales

FAMILY Enterobacteriaceae

GENUS Citrobacter

SPECIES: C. freundii [bowel nosode Bacillus No. 7]

GENUS Enterobacter

SPECIES: E. cloacae. [bowel nosode Bacillus No. 7]

GENUS Escherichia

SPECIES: E. coli [Colibacillinum]

E. coli mutabile [bowel nosode Mutabile]

GENUS Hafnia

SPECIES: H. alvei. [bowel nosode Bacillus No. 7]

GENUS Klebsiella

SPECIES: K. pneumoniae

GENUS Morganella

SPECIES: M. morganii [bowel nosode Morgan pure]

GENUS Proteus

SPECIES: *P. mirabilis* [bowel nosode Proteus] *P. vulgaris* [bowel nosode Proteus]

Classification

GENUS Salmonella

SPECIES: S. paratyphi [Paratyphoidinum]

S. typhi [Eberthinum; Typhoidinum]

S. enteritidis [bowel nosode Gaertner]

GENUS Shigella

SPECIES: S. dysenteriae [bowel nosode Dysenteriae Co.]

GENUS Yersinia

SPECIES: Y. pestis [Pestinum]

ORDER Pasteurellales

FAMILY Pasteurellaceae

GENUS Haemophilus

SPECIES: H. influenzae [Hib vaccine]

ORDER Pseudomonadales

FAMILY Pseudomonadaceae

GENUS Pseudomonas

SPECIES: P. aeruginosa

ORDER Vibrionales

FAMILY Vibrionaceae

GENUS Vibrio

SPECIES: V. cholerae [Cholera nosode]

Group Epsilon Proteobacteria

ORDER Campylobacterales

FAMILY Campylobacteraceae

GENUS Campylobacter

SPECIES: C. jejuni.

FAMILY Helicobacteraceae

GENUS Helicobacter

SPECIES: H. pylori.

PHYLUM SPIROCHAETAE

ORDER Spirochaetales

FAMILY Leptospiraceae

GENUS Leptospira

SPECIES: L. interrogans [Weil's disease]

FAMILY Spirochaetaceae

GENUS Borrelia

SPECIES: B. burgdorferi [Lyme nosode]

GENUS Treponema

SPECIES T. pallidum [Syphilinum]

T. pallidum pertenue [Framboesinum]

PHYLUM CYANOBACTERIA

ORDER Chroococcales

FAMILY Chroococcaceae

GENUS Microcystis

SPECIES: M. aeruginosa

ORDER Nostocales

FAMILY Nostocaceae

GENUS Anabaena

SPECIES: A. flos-aqua [Saxitoxinum]

ORDER Oscillatoriales

FAMILY Phormidiaceae

GENUS Arthrospira

SPECIES: A. maxima [Spirulina]

FAMILY Pseudanabaenaceae

GENUS Spirulina

SPECIES: S. maxima [Spirulina]

PHYLUM SAPROSPIRAE (no representives in homeopathy)

PHYLUM CHLOROFLEXA (no representives in homeopathy)

DIVISION TENERICUTES

[wall-less eubacteria]

PHYLUM MYCOPLASMA (no representives in homeopathy)

DIVISION FIRMICUTES

[Gram-positive and protein-walled bacteria]

PHYLUM ENDOSPORA

Class Bacilli

ORDER Bacillales

FAMILY Bacillaceae

GENUS Bacillus

SPECIES: B. anthracis [Anthracinum]

B. brevis [Tyrothricinum]

FAMILY Listeriaceae

GENUS Listeria

SPECIES: L. monocytogenes [Listeriosis nosode]

FAMILY Staphylococcaceae

GENUS Staphylococcus

SPECIES: S. aureus [Staphylococcinum]

ORDER Lactobacillales

FAMILY Enterococcaceae

GENUS Enterococcus

SPECIES: E. faecalis [Enterococcinum]

Enterococcus spp. [Strepto-enterococcinum]

FAMILY Lactobacillaceae

GENUS Lactobacillus

SPECIES: L. acidophilus [Lactobacillus]

FAMILY Streptococcaceae

GENUS Streptococcus

SPECIES: S. pneumoniae [Pneumococcinum]

S. pyogenes [Scarlatinum. Streptococcinum]

Class Clostridia

ORDER Clostridiales

FAMILY Clostridiaceae

GENUS Clostridium

SPECIES: C. botulinum [Botulinum]

C. difficile

C. perfringens

C. tetani [Tetanotoxinum]

PHYLUM PIRELLULAE

ORDER Chlamydiales

FAMILY Chlamydiaceae

GENUS Chlamydia

SPECIES: C. trachomatis [Chlamydinum]

PHYLUM ACTINOBACTERIA

ORDER Actinomycetales

FAMILY Actinomycetaceae

GENUS Actinomyces

SPECIES: A. albus [Streptomyces albus]

A. citreus [Streptomyces citreus]

A. griseus [Streptomyces griseus]

A. israelii

A. luteus [Nocardia lutea]??

FAMILY Corynebacteriaceae

GENUS Corynebacterium diphtheriae

SPECIES: C. diphtheriae [Diphtherinum]

FAMILY Micromonosporaceae

GENUS Micromonospora

SPECIES: M. purpurea [Gentamicinum]

FAMILY Mycobacteriaceae

GENUS Mycobacterium

SPECIES: M. avium [Aviaire]??

M. avium subsp. paratuberculosis [Johneinum]

M. bovis [Tuberculinum bovinum Kent]

M. leprae [Leprominium]
M. tuberculosis [Tuberculinum]

FAMILY Nocardiaceae GENUS Nocardia

SPECIES: N. asteroides

?? nocardia lutea??

FAMILY Streptomycetaceae

GENUS Streptomyces

SPECIES: S. albus [Salinomycin]

- S. ambofaciens [Spiramycin]
- S. aureofaciens [Chlortetracycline; Aureomycin]
- S. caespitosus [Mitomycin]
- S. erythreus [Erythromycin]
- S. fradiae [Neomycin]
- S. garyphalus [Cycloserine]
- S. griseus [Streptomycin]
- S. nodosus [Amphotericin B]
- S. noursei [Nystatin]
- S. peucetius var. caesius [Doxorubicin]
- S. rimosus [Oxytetracycline]
- S. venezuelae [Chloramphenicol]

Books like this - materia medicae - depend on the availability of pertinent material. Homeopaths who are willing to share the results and details of their cured cases are generously adding to our database all the time. I was disappointed not to receive more "bacteria" cases, having asked about four hundred homeopaths to share their work. I am sure this does not mean that nobody uses nosodes! I should like to encourage homeopaths to write up, publish, teach, share their cases.

A plea for bacterial behaviour!

Well-documented cases increase our understanding of remedies. I should like to encourage ALL homeopaths to take the time to share their work, [write, publish, teach, talk about, question] and thereby increase our general knowledge.

When we work communally, like the bacteria, our work becomes more than the sum of its parts. To be human is to battle between selfishness and altruism. Strive for the latter, and serve humanity with homeopathy! info@emrysspublishers.com